Scalable I/O Middleware and File System Optimizations for High-performance Computing

Wei-keng Liao, Alok Choudhary Northwestern University

Mahmut Kandemir Pen State University

Supported by NSF and DOE

HEC FSIO Workshop, 2008

Project Overview

- Improving MPI I/O performance
 - ◆ Individual collective I/O operation
 - ◆ Across multiple I/O operations
- Improving caching/prefecting at I/O servers
 - ◆ Eliminate harmful prefetching and eviction

Unique vs. Shared file I/O

- Two programming styles for parallel apps
- Unique-file I/O usually performs better
 - ♦ No data consistency and cache coherence issues
 - ◆ Problem with file management
- Shared-file I/O produces less files
 - ◆ Easier for management, data are in canonical order
 - File systems must enforce data atomicity and coherent cache

MPI Collective I/O

- ROMIO uses the two-phase I/O strategy
 - Communication phase
 - * Redistribute data among processes in a way the I/O phase is the least expensive
 - ◆ I/O phase
 - * Fast when I/Os are large contiguous chunks of requests
- Can I/O phase perform like unique-file I/O?

File Locking Protocols

- Token-based -- GPFS
 - A token holder has authority for granting further lock requests to its already-granted byte range
 - Mercury, IBM IA-64 Linux, TeraGrid, NCSA
 - ◆ Lock granularity == file stripe size
- Server-based -- Lustre
 - ◆ Each server manages locks for the file stripes it stores
 - Jaguar, Cray XT, ORNL
 - Lock granularity == file stripe size

ROMIO test for collective I/O

3D block partitioning

FLASH I/O

- I/O kernel of the FLASH application from University of Chicago
- I/O method: HDF5
 - Each process writes 8032x32x32 arrays
 - I/O amount increases as the number of MPI processes
- I/O pattern
 - Non-interleaved among processes

S3D I/O Pattern

S3D is a turbulent combustion application using a direct numerical simulation solver from SNL

S3DI/O

Summary I

- Token-based locking protocol -- GPFS
 - ◆ Use file domains that align with stripe boundaries
- Server-based locking protocol -- Lustre
 - Use static-cyclic partitioning method
 - Choose cb_nodes to be a multiple of stripe width
- Communication phase becomes important
 - Currently using MPI All-to-all and Isend/Irecv, they do not scale well beyond 1000 processes

I/O Delegate

- Optimization considering multiple collective or independent I/O calls
- Allocate a separate group of compute nodes as I/O delegates
 - ◆ Uses a small percentage (< 10 %) of additional resource</p>
 - * Aggregate small requests to larger ones
 - Rearrange data based on file system locking protocols
 - Entire memory space can be used as collective buffer at delegates

Collaborated File Caching

- A fully functional distributed, coherent cache system at the delegates
- Cache metadata management
 - Metadata are cyclically distributed among all processes
 - Lock protocol for metadata atomicity
- Caching policies
 - Local: page eviction (least-recent used)
 - Global: page migration (referred consecutively twice)

I/O Delegates are 3%

I/O Delegates are 10%

Summary II

- I/O delegate is designed to improve multiple MPI I/O operations
 - Small percentage of additional nodes provides significant
 I/O improvement
- Future work
 - Integrate into two-phase I/O
 - Incorporate the file domain partitioning methods

Data Throttling and Pinning

- In prefetch throttling, one or more CPUs are (temporarily) prevented from issuing prefetch requests to reduce the number of harmful prefetches
- In data pinning, select data blocks brought to the memory cache by a CPU are marked as non-removable (i.e., pinned in the cache) for a certain period of time

Helper Thread Based I/O Prefetching

 Our approach obtains inter-thread data sharing information using profiling and divides parallel threads into clusters and assigns a separate (customized) I/O prefetcher thread for each cluster

Publications

- Wei-keng Liao and Alok Choudhary. "Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on Underlying Parallel File System Locking Protocols". To appear in SC08.
- Arifa Nisar, Wei-keng Liao, and Alok Choudhary. "Scaling Parallel I/O Performance through Delegation and Cooperative Caching". To appear in SC08.
- Ozcan Ozturk, Seung Woo Son, Mahmut Kandemir, and Mustafa Karakoy. "Prefetch Throttling and Data Pinning for Improving Performance of Shared Caches". To appear in SC08.
- Seung Woo Son, Sai Prashanth Muralidhara, Ozcan Ozturk, Mahmut Kandemir, Ibrahim Kolcu, and Mustafa Karakoy. "Profiler and Compiler Assisted Adaptive I/O Prefetching for Shared Storage Caches". To appear in PACT08.